
ISRAEL JOURNAL OF MATHEMATICS 102 (1997), 125-177 

EXPLICIT FORMULAS FOR THE 
WALDSPURGER AND BESSEL MODELS* 

BY 

DANIEL BUMP 

Department of Mathematics, Stanford University 
Stanford, CA 95305-~125 , USA 

e-mail: bump@gauss.stanford.edu 

AND 

SOLOMON FRIEDBERG 

Department of Mathematics, University of California Santa Cruz 

Santa Cruz, CA 95065, USA 

and 

Department of Mathematics, Boston College 

Chestnut Hill, MA 02167-3806, USA 
e-mail: friedbeOcats.ucsc.edu 

AND 

MASAAKI FURUSAWA 

Department of Mathematics, The Johns Hopkins University 
Baltimore, MD 21218, USA 

e-mail: furusawaOmath.jhu.edu 

ABSTRACT 

This paper studies certain models of irreducible admissible representations 
of the split special orthogonal group SO(2n + 1) over a nonarchimedean 
local field. If n = 1, these models were considered by Waldspurger. If 

n -- 2, they were considered by Novodvorsky and Piatetski-Shapiro, who 

called them Bessel models. In the works of these authors, uniqueness of 
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the models is established; in this paper functional equations and explicit 
formulas for them are obtained. As a global application, the Bessel period 
of the Eisenstein series on SO(2n-{- 1) formed with a cuspidal automorphic 
representation lr on GL(n) is computed--it is shown to be a product of L- 
series. This generalizes work of Bhcherer and Mizumoto for n = 2 and base 
field Q, and puts it in a representation-theoretic context. In an appendix 
by M. Furusawa, a new Rankin-Selberg integral is given for the standard 
L-function on SO(2n + 1) × GL(n). The local analysis of the integral is 
carried out using the formulas of the paper. 

In this paper  we will study certain models of irreducible admissible representa- 

tions of the split special orthogonal group SO(2n+ 1) over a nonarchimedean local 

field. If n = 1, these models were considered by Waldspurger [Wal,Wa2], and 

arose in his profound studies of the Shimura correspondence. If n = 2, they were 

considered by Novodvorsky and Piatetski-Shapiro [NP], who called them Besse l  

m o d e l s ,  and for general n they were studied by Novodvorsky [No]. In the works 

cited, these authors established the uniqueness of these models; in this paper  we 

establish functional equations and explicit formulas for them. In general, these 

models arise from a variety of Rankin-Selberg integrals (for example, those of 

Andrianov [An], Furusawa [Ful], and Sugano [Su]), and the results of this paper  

will naturally have applications to the study of L-functions. One such application 

is presented in the appendix to this paper, by ~ r u s a w a ,  where a new Rankin-  

Selberg integral is given for the standard L-functions on SO(2n + 1) x GL(n).  

Moreover, these models arise in the study of the theta  correspondence between 

SO(2n + 1) and the double cover of Sp(2n), and they will therefore be of impor- 

tance in generalizing the work of Waldspurger (see Furusawa [Fh2]). 

In the final Section, we present a global application of the explicit formulas: 

we consider the Eisenstein series (6.1) on SO(2n + 1) formed with a cuspidal 

automorphic representation Ir on GL(n), and we show that  its Bessel period 

(6.2) is essentially a product of L-series 

L(n(s - 1/2) + 1/2,1r) L ( n ( s -  1/2) + 1/2,1r ® ~/), 

where ~} is a quadratic character. This result generalizes work for n = 2 and 

base field Q of Mizumoto [Mi] and Bhcherer [Bh], and puts it in a representation- 

theoretic context. 



Vol. 102, 1 9 9 7  WALDSPURGER AND BESSEL MODELS 127 

This global application is closely related to the results of Bump, Friedberg, 

and Hoffstein [BFH2]. That paper computes the spherical Whittaker functions 

on the metaplectic double cover of Sp(2n). (Whittaker models on that  group are 

also unique.) The computation in [BFH2] has the following consequence: if one 

forms the metaplectic Eisenstein series on the double cover of GSp(2n) with a 

cuspidal automorphic representation ~r of GL(n) (which is possible because the 

cover splits over GL(n) C Sp(2n)), the Whittaker coefficients of this Eisenstein 

series are quadratic twists of the standard L-function of It. The close relation 

between these two computations is a reflection of the following result of Furu- 

sawa [Fu2], generalizing the case n = 2 in Piatetski-Shapiro and Soudry [PSI: 

the (special) Bessel coefficient of a cusp form on SO(2n + 1) essentially agrees 

with the Whittaker coefficient of the theta lift on the double cover of Sp(2n). If 

instead of a cusp form one considers the Eisenstein series (6.1), the theta corre- 

spondent on the metaplectic group is the metaplectic Eisenstein series, and our 

calculation implies that  this result of Furusawa for cusp forms is true for these 

Eisenstein series also. (Our calculation of the Bessel period is in fact direct and 

independent of [Fu2].) 

These results should have an application to the nonvanishing of L-functions 

under quadratic twists. Namely, there are Rankin-Selberg integrals on the double 

cover of GSp(6) ([BG]) and on SO(7) ([Gi]) unfolding to Dirichlet series involving 

the Whittaker (resp. Bessel) periods described above, that  is, to Dirichlet series 

whose individual coefficients are the quadratic twists of a standard GL(3) L- 

series. (The two constructions give Dirichlet series whose individual coefficients 

are Euler products which agree at almost all places.) Arguing as in [BFH1], 

one should be able to show that an infinite number of these quadratic twists are 

nonzero. In fact, these integrals are the next members of a series beginning with 

Siegel's calculation of the Mellin transform of a metaplectic GL(2) Eisenstein 

series and including integrals of Hecke type on the double cover of GSp(4) (due 

in a nonmetaplectic context to Novodvorsky; see [BFH1]) and on SO(5) (due to 

Maass). The elucidation of this scenario owes much to discussions with Duke, 

Ginzburg, Goldfeld, and Hoffstein. In particular, the verification that our results 

could be applied to the evaluation of (6.2) was first worked out in conversation 

with Ginzburg. 
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1. N o t a t i o n s  a n d  s t a t e m e n t  o f  r e su l t s  

Let F be a nonarchimedean local field of characteristic different from 2. Let 

O denote the ring of integers of F,  w denote a local uniformizer, q denote the 

cardinality of the residue field O/wO, and ] IF denote the absolute value on F,  

normalized so that  ]WIF = q-1. 

We begin by describing our results on the Waldspurger model. Let G2 -- 

GL(2 ,F) ,  and let T2 be a maximal torus in G2. Then T2 is the connected 

component of the identity in a group of orthogonal similitudes of degree two 

corresponding to some quadratic form. If (Ir2, V,2) is an irreducible admissible 

representation of G2, and if a: T2(F) --+ C is a character, then there exists at 

most one linear functional W: V~ 2 -+ C (up to scalar multiplication) such that  

(1.1) v) = o(t) w ( v )  

for all t E T2 and v E V~ 2. This is proved when a = 1 in Waldspurger [Wal], 

Proposition 9 ~, and the proof in the general case is identical (as pointed out 

in [Wa2], Lemme 8). In order for such a functional to exist, since T2 contains 

the center Z2 of G2, it is necessary that  the restriction of a to Z2 match the 

central character of 7r2. We will call a functional satisfying (1.1) a W a l d s p u r g e r  

func t iona l .  The W a l d s p u r g e r  m o d e l  for 7r 2 will be the space of all functions 

of the form g w,, W(~r2(g)v) with v E V~ 2 . 

First let us consider the case where T2 = T~ is nonsplit. We will limit ourselves 

to the case where T~ has the form 

X 

where e e O × is a nonsquare. In this case, let T~(O) = T~ M GL(2, O). We will 

further assume that  a is trivial on T~(O). Since T~ is generated by T~(O) and 

by the center of G2, on which a is to agree with the central character of 7r2, it 

follows that  a is uniquely determined by these conditions. (We note that  if T~ 

and a are obtained by localizing global data then these conditions will be satisfied 

locally almost everywhere at places where the global quadratic form defining T2 

is nonsplit.) 

Suppose that  ~r2 is in the unramified principal series. Then the contragredi- 

ent representation of Ir2 is also spherical, and the GL(2, O)-fixed vector in the 

contragredient representation is clearly T~(O)-invariant. Since it also has the 
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correct transformation property with respect to the center of G2, it is thus a 

Waldspurger functional. Thus if ¢ is the spherical vector in V~2, the function 

g ~+ W(r2(g)¢) is the spherical function for 1r2, which is given by the Macdonald 

formula (see [Ca1]). 

One of our results will be a formula analogous to the Macdonald formula for 

the spl i t  Waldspurger functional. Thus let T2 = T~ be a split torus of G2. 

Specifically, we may take T~ to be the group of diagonal matrices in G2; also, let 

B2 be the Borel subgroup consisting of upper triangular matrices in G2. 

Let us construct a Waldspurger functional for the unramified principal series. 

Let ~1, ~2 be unramified quasicharacters of F x , and let ~ be the character of B2 

given by 

(1.3) 

Suppose Ir2 

,((o , + , +  

= Ind(~) (we also write ~r2 = Ind(~l,~2)) is the representation 

obtained by normalized induction from the character ~. Thus V~ 2 consists of 

the complex-valued locally constant functions f on G2 such that  

(1.4) f(bg) :~ (b )5~7(b ) f (g  ) 

for all b E B2, g E G2, where 5B2 is the modular character of B2, and ~r2 is the 

right regular representation. 

Let a be an unramified quasicharacter of F x . Extend a to T~2 (we use the same 

letter) bY the f°rmula a ( (  ab ) )  b = a(a) ~1~2(b). Then a Waldspurger functional 

on V,~ 2 is defined as follows. Suppose f E V~ 2. Let 

(1.5) 

W(f) : f f ((01 10)(~ 11)t) or-l(t) d×l~ 
Z2\T~ 

= f lo)(lo 11)(o o))o._l(a)d×a. 
F × 

The Haar measure on F x is normalized so that  the measure of O x is 1. Suppose 

that  ~ (w)  = 7~ for i = 1, 2, and that  a(w) = ~-. As we shall show in Section 2 

below, the integral (1.5) is absolutely convergent in the region 

(1.6) I ,r-'l <q'n, i ;,rl < q n. 
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For these representations, (1.1) holds. 

Let Ce be the K2 = GL(2, O)-fixed vector in V,~ 2 such that ¢~(I2) = 1. Define 

a function Wa~: G2 ~ C by the formula 

Wae(g) =W(~2(g)¢~). 

This function is analogous to the Whittaker function obtained from the standard 

Whittaker functional. 

Our main result on the Waldspurger functional gives the analytic continuation 

of the function Wa = Wa~ to the full space of unramified quasicharacters ~1, ~2, 

and a, and an explicit formula for its value. To describe this, note that 

(1.7) Wa~(t2ga2) = a(t2) Wa~(g) 

for all t2 E T~, E2 E g 2 .  Hence it suffices to determine Wa~ on a set of coset rep- 

resentatives for the double cosets T~\G2/K2. Using the Iwasawa decomposition, 

it follows that  a set of coset representatives is given by the matrices 

7/k----(10 1 1 ) ( ~ k  Ol), 

with k _> 0. In Section 2 we shall prove 

THEOREM 1.1: Suppose that (1.6) holds. Let 

Wa~(g) = (1 - 71T-lq-1/2)(X -- 721Tq -1/2) Wa~(g). 

1 - 71721q -1 

Then Wa~ is given by the formula 

(1.8) Wa~(~/k) = (1 - q-1)-iq-k/2x 

[Tk1(1--72~r-lq-1/2)(1--771Tq-1/2) .}_Tk2 (1--71T--lq--1/2)(1--721~'q--1/2) ] 
1 - - 7 1 1 7 2  1 -- 7172 

In particular, the function Wa~, originally defined as an integral when the 

inequalities (1.6) hold, has holomorphic continuation to all 71,72, v c C x , and is 

invariant under the interchange of 71 and 72. 

Note that  if 71 = 72, this must be interpreted correctly: both the numerator and 

the denominator in (1.8) vanish, but their ratio is analytic, so the formula still 

makes sense. 
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We also address the analytic continuation of the Waldspurger functionals. Let 

A be the domain of (71,72, T) E ( C × )  3 such that TT~ 1 # ql/2 and T721 # ql/2. 

We note that  for fixed ~1 and ~2, the space Ind(~) may be identified with the space 

C °° ((B2 N K2)\K2) of locally constant functions on K2 which are left invariant 

by B2 N/(2; indeed, such a function may be uniquely extended to a function on 

G2 satisfying (1.4), and every element of Ind(~) arises uniquely from an element 

of C ~ ((82 n K2)\K2) in this way. We shall also prove in Section 2: 

THEOREM 1.2: Fix an element f 6 C a ((B2 MK2)\K2). For (71,72, T) satisfying 

(1.6), f may be extended uniquely to an dement of Ind(~), and the function 

W( f )  defined by (1.5) may thus be regarded as an analytic function of three 

variables (71,72,T). This function has analytic continuation to all of A, so the 

domain of definition of W: Ind(~) --+ C may be extended to a11 ~ for which 

the parameters are in h. If (71,72, ~-) 6 A, then W defines a (possibly zero) 

Waldspurger functional on Ind(~). 

The analytic continuation assertion here can actually be deduced from Theo- 

rem 1.1, since if ~ is in general position then the representation ~r2 is irreducible, 

and hence every element of Ind({) is a linear combination of right translates of 

the spherical vector. Thus there is some overlap between these two theorems. 

In fact, however, we shall give a direct proof of Theorem 1.2, independent from 

Theorem 1.1. 

Next let us describe our results concerning the Bessel models. For r > 2 let 

SO(r, F)  denote the split group of determinant one orthogonal matrices 

SO(r, F)  = {g 6 SL(r, F) I (gx, gy) = (x, y) for all x, y E F r } ,  

where ( , )  is the quadratic form 

( x , y )  = x ,  y r + l _ , .  
i----1 

Let G = SO(2n + 1, F),  and let U be the subgroup of G consisting of upper 

triangular unipotent matrices whose center 3 x 3 block is the identity. An element 

of U is of the form u = (uij) with uij = 0 for i , j  = n,n + 1,n + 2 and i # j .  

Let ¢ be a character of F of conductor O. Given S = ( a, b, c) 6 0  such that  

b 2 + 2ac # O, define a character Os of U by the formula 

(1.9) 9S(U) = ,1~(u12 -{- u23 -{-''"~-Un-2,n-1 JcaUn-l,n -~-bUn-l,n-}-I -[- C'//'n--l,n-}-2)" 
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(1.11) 

for all 

Let T be the subgroup of G consisting of the matrices of the form 

which, acting by conjugation, stabilize Os. This constrains g to lie in a suitable 

torus in SO(3). Thus T is a torus in G, which may be either split or nonsplit 

over F, depending on S. Note that  T normalizes U, and hence R: = TU is again 

a subgroup of G. Let ), be a character of T, and extend Os to a character of R 

by Os(tu) = A(t)Os(u). 

Let ~r: G ~ End(V~) be an admissible representation of G. Then a Besse l  

f u n c t i o n a l  on Ir is a linear functional B: V~ --+ C such that  

(1.10) S(u(tu)v) = Os(tu) B(v), 

for all t E T, u E U, and v e V~. As shown by Novodvorsky [No], i fu  is irreducible 

then the dimension of the space of such functionals is at most 1. Note also that,  

in view of the isomorphism of SO(3,F)  and PGL(2 ,F) ,  a Bessel functional on 

SO(3, F )  may be identified with a Waldspurger functional. 

One may similarly define a Bessel functional on the larger group of orthogonal 

similitudes; however, since this group is the direct product of G with its center, 

there is no gain in generality by doing so. 

Once again we shall consider this notion for the unramified principal series. Let 

X1,. . .  , Xn be unramified quasicharacters of F x . We shall consider the principal 

series representation of G 

7r = Ind(Xl , . . .  , X,). 

In our notation, this will be the representation on space of locally constant func- 

tions ¢ on G which satisfy 

• (bg) x , ( y ,  • 

b= 

C y l  * * * * * * 

Y n  * * * * 

1 * * * 
y ~ l  , , 

• . * 
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in the standard Borel subgroup B of G. Here 

-- I1  
i----1 F 

is the modular character of BF. The group action is by right translation. Let 

us write oq = Xi(W). If the ai are in general position then the isomorphism 

class of this representation is invariant under permutations of the ~i, as well as 

transformations of the form (~i ~+ a~  1- Also, let us write K for the standard 

maximal compact subgroup SO(2n + 1, O) of G. 

We may construct a Bessel functional explicitly as follows. There are two 

cases: T nonsplit, and T split. In the split case, we shall take A unramified, i.e. 

identically one on T fq K.  

Suppose first that  T is a nonsplit torus. We assume that c 6 0  × . Write T(O) 
for the subgroup T n K.  For a permutation s in the symmetric group $2~+1, 

we shall also use s to denote the corresponding signed permutation matrix in 

SL(2n + 1, F)  (the matrix with sgn(s) in the is(i), i) position and 0 elsewhere). 

Let Wl = (1,2n + 1)(2,2n). . .  (n - 1,n + 3). Suppose ~ 6 V~r. Then we define 

(1.12) .(9) = f f e et, 
T(O) u 

and this is a Bessel functional on V~. The integral is absolutely convergent if 

the quasicharacters Xi are in a suitable region. Indeed, since T(O) is compact, 

comparing with the standard intertwining operator Tw~ defined in Section 3 below 

(see Lemma 3.1), one finds that  if 

(1.13) 10/11 < ' ' "  < IC~n--ll < min( lan l ,  Ic~nl[), 

then the integral (1.12) is absolutely convergent. 

For the second case, suppose that  T is instead split. We may suppose that  

S = (0, 1, 0). Let us introduce the following notation. For x 6 F,  let us write 

n(x) for the unipotent matrix 

/n-1 ) 
1 x - : r 2 / 2  

n(:r)  = 1 - x  , 

1 
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and for a E F x , let us write t(a) for the diagonal matrix in T given by (~-1 ) 
a 

t ( a ) =  1 . 
a - 1  

The matrices t(a) give all of T. Also we write A(a) = A(t(a)), 13 = A(w). Let 

w0 = wl(n, n + 2) be (a representative for) the long element of the Weyl group 

~t. Then for r as above, and tI, E V~, we define 

(1.14) B(q2) = / / qg(won(1)ut(a))Os(u) -1A-l(a)dudXa. 
F x U 

Then this is a Bessel functional on V~. Once again, the Haar measure on F X is 

normalized so that  the measure of CO x is 1. As we shall show in Section 3 below, 

the integral (1.14) is absolutely convergent if 

(1.15) I~11 < " "  < I~=-lJ < min(l~,,I, IO~n 1 I), [O/n I < ql/2 min(lfl h ifl-1 I)" 

Our first pair of results concerns the functional equations satisfied by B. We 

shall show that,  in both cases, the Bessel functional may be extended to all 

characters X = (X1,.. .  , Xn) by a variation of the familiar process whereby the 

standard intertwining operators are analytically continued, and has a functional 

equation under certain transformations of these characters X. More precisely, the 

Weyl group ~t of G acts on the characters X = (X1,.. .  , X,~), or what is the same 

thing in the unramified case, on the parameters a l , . . .  ,an.  In terms of these 

parameters, fl is the group of transformations of (O/1,. . .  , a n )  E (C x )n generated by 
(C~l, . . .  ,Oln-- l ,OLrt)  ~ (Ot l , . . .  ,Otn--l ,o~nl),  

and by the action of the symmetric group S,~ on ( e l , . . .  ,an) .  The cardinality 

of gt is 2nn!. 

Let @x E V~ be the standard nonramified vector. This is the unique function 

in V~ taking value one on K.  We define a function H = Hx: G ~ C by 

H(9) = B(~r(g) ~×). 

This function is once again analogous to the Whittaker function obtained from 

the standard Whittaker functional. 
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THEOREM 1.3: Suppose that T is nonsplit. Then the function Hx, originally 

defined as an integral when 

I~1 < " "  < I~-~1 < min(lanl, la~l[), 

has a meromorphic continuation to all nonzero complex oL1, . . .  , an. Moreover 

the function 

7ix(g) = H (1 - a i a jq -1 ) - l (1  -- a ia ; lq -1 )  -1Hx(g  ) 
l~_i<j(n 

is invariant under the action of ~ on the ai, and holomorphic for ( a l , . . . ,  an) E 
(c×) n. 

THEOREM 1.4: Suppose that T is split. Then the function Hx, originally defined 

as an integral when 

I0/1[ " ( ' ' "  < IO~n_ll "( min([an], ]C~nlD, ]anl < ql/2 min([/~], [/~-1{), 

has a meromorphic continuation to all nonzero complex al ,  . . .  , an, t3. Moreover 

the function 

qr~x(g ) = 1-iin=l ( 1 - o t i ~ q - 1 / 2 ) ( 1  - (~i~-lq-1/2) H x ( g  ) 
1-Ii_<i</_<n(1 - aiajq-i)(1 - aiaTiq -1) l'-Iin__l(1 - a2q-i) 

is invariant under the action of f~ on the ai, and holomorphic for (O~1,... , an)  E 

(C × )n and ~ satisfying q-1/2 < min(]fl[, [/~[-1). 

The proofs of Theorems 1.3 and 1.4 are given in Section 3 below. 

Our next pair of results gives an explicit formula for 7-tx(g ). As in the case of 

the Waldspurger model (see (1.7)), since 

(1.16) n,d, 'g,~) = Os( , . )n ,dg)  

for all r E R, ~ E K,  it suffices to determine 3 / o n  a set of coset representatives 

for R \ G / K .  Let k = (k l , . . .  ,kn) be a vector of integers with kl _> 0. If T is 

nonsplit then one finds, using the Iwasawa and Cartan decompositions (compare 

Sugano [Su], Lemma 2-4), that  a set of coset representatives for R \ G / K  is given 

by the diagonal matrices of the form 

dk = diag( , . . .  , ,1 , . . .  , , 
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with 

k~ = kl + . - .  + k~. 

If T is split, then one finds instead that  a set of coset representatives is given by 

the matrices gk of the form 

dk if kl = 0, 

gk = n(1) dk if kl > 0. 

For convenience, we write h(k : , . . .  , kn) for the quantity 7-l(dk) (resp. 7-/(gk)). 

From equation (1.16) it follows that H(g) = 0 unless Os is identically one on 

R N gKg -1. A short calculation shows that this implies that  h ( k l , . . .  , k,~) = 0 

unless each ki >_ 0. 

Let .A be the a l t e rna to r  )-~wei2(-1) length(w) w in the group algebra C[gt]. Let 
A n n n - 1  = (-1)  A((~I ~2 "'" ~n). According to Weyl's identity for Sp(2n, C) 

n 

(1.17) A----- II c~-:+i-n(1-(~) I-[ (1-- ~iO~j)(1-- C~iO~; 1)" 
i=l  l <_i<j<_n 

Also let 

e~ = -~ (~ - (i- 1) 5) k~ 
i=l 

Then the evaluation of h (k l , . . .  , kn) is given by 

THEOREM 1.5: Suppose T is nonsplit and ki >_ 0 for i = 1 to n. Then 

h ( k l , . . .  , k,~) = q~k (1 + q - i ) - :  A-1 .,4 ~n+l_~t l  • 
i = l  

In particular, 7~ x (/2n-i-I) = 1. 

THEOREM 1 .6 :  Suppose T is split and ki >_ 0 [or i = 1 to n. Then 

h(kl,  k s , .  • • , kn)  : qek(1 - q - : ) - I  A-1 

X ~4 C l n + l _ i ( I  -- C~i~q-l/2)(1 

In particular, the function 7/x is holomorphic for all ( a l , . . . ,  a,~, ~) E (C × )n+l, 

a n d  ~'~X ( /2n+l )  = 1. 

We note that  if kl = 0, this may be written more simply as 

( 1 . 1 8 )  h ( 0 ,  k 2 , . . . ,  kn) -- qe, A-1  

x A c,= 1 H ~ - k ' + ' - ' - " - l + ' (  1 - , ~ q - 1 / 2 ) (  1 - ~ B _ ~ q _ l / 2 )  . 
i = l  



Vol. 102, 1 9 9 7  WALDSPURGER AND BESSEL MODELS 137 

These theorems are proved in Section 4 below. 

Let us finally formulate the meromorphic continuation of the Bessel functional 

to all values of X. We will formulate this result only in the split case; the nonsplit 

case is nearly identical. Suppose that ~ • C °° ((B A g ) \ g ) .  Given X, there is a 

unique extension k~ x of g/ to an element of Ind(x) satisfying (1.11). 

THEOR.EM 1.7: There exists a dense open subset F of (C × )n+l such that there 

exists a Bessel functional B on V, for all ( a l , . . .  , an, ~) E F; if (1.15) is satisfied, 

this functional agrees with that defined by (1.14); and i f  g2 • C°~((B N K ) \ K ) ,  

then B(@x) is a meromorphic function of ~1, . . .  , an,/3, whose polar set is con- 

tained in the complement of F. 

As with Theorem 1.2, there is some overlap between this result and our previous 

Theorems. We will prove Theorem 1.7 by means of a theorem of Bernstein [Be] 

in Section 5. Actually Bernstein's theorem implies that the complement of F 

may be taken to be a countable union of hyperplanes. 

In view of the isomorphism of SO(5, F) to the projective group of symplectic 

similitudes PGSp(4, F), the theorems above imply the functional equation and 

the explicit formula for the Bessel model on G4 := GSp(4). The Bessel model 

on GSp(4, F) was first studied by Novodvorsky and Piatetski-Shapiro [NP]. A 

formula for the generating series of this model was given by Sugano in [Su], 

Proposition 2-5. To state the explicit formula, consider the group 

-12 g = v(g) -12 , v(g) E . 

(oh~s) Let S E M2(O) be a nonsingular symmetric matrix S -- b/: c . Let U4 be 

the unipotent radical of the Siegel parabolic 

X 

and let 0s be the character of U4 given by Os(u) = ¢(tr(SX)). Let T be the 

torus in G4 consisting of those matrices of the form 

which, acting by conjugation, stabilize 0s; thus h ¢ G2 is required to satisfy 

t hSh  = det(h)S. Then T normalizes U, and hence R := T U  is a subgroup of 
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G4. Let A be a character of T, and once again extend 0s to a character of R by 

o s ( t u )  = 0s(u). 
If  7r is an admissible representation of G4, a Bessel functional on ~r is once 

again a linear functional B: V~ ~ C such that  

B(Tr(tu)v) = Os(tu) B(v), 

for all t E T, u E U, and v E V~. If 7r transforms by a central character, then 

since T contains the center Z4 of G4, this notion requires that  A Iz4 match this 

character. 

Let 7r = Ind(x) be the principal series representation obtained by normalized 

induction from a character X of the standard Borel subgroup of G4. For X in a 

suitable domain a Bessel functional may be obtained by integration as above. If 

• × C V~ is the standard nonramified vector, then define H = Hx: G4 -+ C by 

the formula H(g) = B(Tr(g)q?x). 
To describe the explicit formula for this function, define parameters  a l  to a4 

by 

X 1 = al, X 1 : a2, 
1 w 

)~ U7 ~ Or3' ~ U7 ~-~ Or4" 

w 1 

The Weyl group f~4 acts on these parameters  through all permutat ions of the ai  

which preserve the relation ala3 = o~2ot4. Let .44 be the alternator 

( - -1)  length(w) w 

WE~4 

in the group algebra C[ft4]. Observe moreover that  the function H is completely 

determined by its values on the elements 

a k , l  -~ 
I UTk+2l ~Tuk+l 1 v~ l ) 
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with k, l > 0 if T is nonsplit,  and by its values on the elements 

ak,o if I = 0 

bk't = m(1)ak,t otherwise 

with k, 1 >_ 0 if T is split, where we set (11 / 
m(1) = 1 1 " 

- 1  1 

Then  we have 

COROLLARY 1 .8:  Suppose that T is nonsplit and c E 0 × . 

(1) The function H x may be defined by continuation for all unramified char- 

acters  X. Moreover the function 

= (~1C~2 q ) (1 - a2a31q-1) - lHx(g)  7-lx(g) (1 -- --1 --1 --1 

is holomorphic and invariant under the action of f~. 

(2) The function 7t x is given by the explicit formula 

7ix(ak,t) ---- 

(,~k-klq-2,~l ,.~-1 {1 ~ 4 ~ 2 1 q - 1 ) )  
(1 + q - 1 ) - l q  -3k/2-2zfl'4 V~3 "2'-'4 ~ - a la31q-1) (  1 - 

¢44 ( ~ 2 ~ 4 1  ) 

valid for k, l > O. 

In  the split case, let us suppose without  loss tha t  a = c = 0, b = 1. Let/31,/32 

be the  parameters  

/31 = A 1 w 1 , /32 = A w 

w 1 

We are concerned with characters X such that  ala3 =/31/32. Then  we have 

COROLLARY 1 .9 :  Suppose that T is split. 

(1) The function H x may be defined by continuation for all unramified char- 

acters  X, A such that X Iz4 = A Iz,. Moreover the function 

H~j =I (1  - ai/3~-lq-1/2) 

7{x(g) = ( i  - oq(~21q-1)(l - oqot31q- l ) ( l  - O~20131q-l)(l -- 012~41q - I )  Hx(g) 
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is ho10morphic and invariant under the action of  ~. 

(2) The function 7i x is given by the explicit formula 

7ix(bkj) : 

/o~k-}-l-l-20~l OL -1 Y'[ f l  _ Oq~lq-1 /2 ) )  
( l_q_1)_1q_3k/2_21A4~,  3 2 4 11i=l,4;j=l,2t ~ 

( . 2 . ;  1 ) 

vaJid for k, l > O. 

2. T h e  W a l d s p u r g e r  func t iona l  

We begin the study of the split Waldspurger functional with the following Lemma. 

LEMMA 2.1: Suppose that the inequalities (1.6) hold. Then the integral (1.5) is 

absolutely convergent. 

Proof: Let f E Ind(~) be given. Since Ks is compact, there is a number C such 

that  If(a)l < C for all a E K2. One has the matrix identities 

(2.1) (0 { (; 11) (-: 01) if,a,F<l, 
1 10)(10 11)(0 7) = (10 7)(7 a 1-') if,aiF>l. 

where the last matrix in each case is in K2. Since f E Ind(~), one obtains the 

inequalities 

1 { f((~ 10)(10 1)(~ 0'))1< C[aill2i~l(a)[ ifiaiF~l' 
- Cla171/21~2(a)l iflalF > 1. 

Thus one sees that  the integral (1.5) is majorized by the sum of the integrals 

I I~l(a)l Io'-l(a)l lal]Z 2 dXa 
lalF_<l 

and 

S I~(a)l Io-l(a)l la171/~ dXa. 
lalF>l 

But when the inequalities (1.6) hold, each of these integrals is an absolutely 

convergent geometric series. The Lemma follows. | 
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We turn to the proof of Theorem 1.1. The proof makes essential use of ideas 

of Casselman and Shalika [CS], and of Banks [Ba]. 

Let us define certain elements of the representation 7r = 1r2 = Ind(() as follows. 

Let ¢~ be the normalized K2-fixed vector, and for k > 0, let 

(2.2) 

We have 

Fk(g)=/o¢~(g( 1 ; ) (  yak 1)) dz, 

Ck(g)-----¢~(g( 1 11 ) (wk  1 ) ) "  

Applying the Waldspurger functional W, and noting that 

depends only on the valuation of z, we see that 

(X-q-1)~,(g)=Fk(g)-/~,o¢~(g( 1 ; ) (  wk 1 ) )  dz. 

A simple change of variables shows that the second integral equals 

q-17r( w 1)Fk- l (g ) ,  

and so applying the Waldspurger functional W, we obtain 

(2.3) (1 - q-1)W(¢k) = W(Fk) - q-ITW(Fk-1). 

As in Casselman [Cal] and Casselman and Shalika [CS], the vectors Fk are fixed 

by the Iwahori subgroup B2 of G2. We remind the reader of the Casselman basis 

of the Iwahori fixed vectors of G2. Assuming that ~ is regular, we define linear 

functionals T~ for w a Weyl group representative of G2 by (the continuations of) 

the integrals 

Twf = ] f(w-ln) dn, 
g 4  

.IN NwNw-x\N 
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where N is the group of upper triangular unipotent matrices in G2. Compare with 

Lemma 3.1 below. These functionals are linearly independent on the Iwahori fixed 

vectors, and the Casselman basis fw is defined by T, ofw, = 5(w, w') (Kronecker 

delta) for w and w' in the Weyl group. If w0 is (a representative of) the long 

element of the Weyl group, then 

{¢¢(g) ifg E B2woB2, 
(2.4) fw°(g) = 0 otherwise. 

The element fl is given by a more complicated formula, and we do not need to 

know it. Since Fk is an Iwahori fixed vector, we can write 

Fk = c(1, ~) fl + C(Wo, ~) f,~o, 

and by definition of the fw, c(w,~) = TwFk. It is easy to see (and proved in 

Casselman and Shalika [CS]) that 

(2.5) T1Fk = q-k/~.y) ,  T~oFk = (1 - q - l ~ ; ~ ) ( 1  - ~ f 1 ) - 1  q-k/~.y~. 

Thus 

W ( f k )  = W ( f l ) q - k / ~ . y )  + (1 - q - ~ 1 ~ ; ~ ) ( 1  - ~ , ~ ; ~ ) - 1  q-k/~.y)  W(f~o) .  

Now using (2.3), we find that 

(1 - q-~)w(¢k) = ( t  - q-~/~'r'ff l )w( f , )  q-k/~.y) 

+ (1 - q-1/27"7;1)(1 - q-1717~-')(1 - 7,721) -1 q-k/2,,/~ W(f, oo). 

We may compute W(fwo) explicitly. By definition this equals 

; x f ,  oo ( (  1 1 ) ( 1  I ) ( a  l))a(a)_ld×a, 

and it follows from (2.4) that the integrand here equals 

¢ 4 ( (  1 1 ) ( 1  1 1 ) ( a  1 ) )  

if lair > 1, zero otherwise. Thus 

LF I  ((11) (1 1))o a  idXa 
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If taIF = qk, k ~_ O, then the integrand is readily evaluated using (2.1), and equals 

T k ,~2 k q-k~2 so, assuming (1.6), the last integral is absolutely convergent and 

equals (1 - q-1/2T721)-l. Thus 

(1 -- q-1)W((k) ----(1 -- q-1/2T'7~l)W(fl) q-k~2 .,/~ 
+ (1 -- q-1~'1"~21)(1 -- ")'172-1) -1 q-k/2..,/k. 

We have not yet proved the Theorem since we have not evaluated W(f l ) .  Note 

however that the Theorem will follow if we prove that Wa G is invariant under the 

interchange of ~'1 and ~/2; indeed, we may assume without loss of generality that 

is regular, so ~1 ~ ")'2" Then, because the two funct ions q-k/27k 1 and  q-k/2~k 
of k are linearly independent, the unknown value of W(fl) will be determined. 

We will show that WaG(1 ) :- 1. This is sufficient: indeed, recalling Wald- 

spurger's theorem on the uniqueness of the model, there is a unique spherical 

vector in this unique model which is normalized to equal 1 at g = 1. If Wa¢(1) = 1 

then clearly Wa~ must be this vector; then, since the isomorphism class of the 

representation 7r2 = Ind(~) is unchanged when we interchange ~/1 and 72, WaG is 

thus invariant under this interchange. By definition 

Wa,(1)__/F×¢~((1 1 ) ( 1  1 1 ) ( a  1))a(a)_ldXa ' 

and in this integral, the integrand is constant when a has constant valuation. 

(This is not true for Wa~(~?k), which is the reason for the somewhat elaborate 

proof of this Theorem!) Once again applying (2.1), we find that the integrand 

equals r-k')'klq -k /2  if [alF = q-k, k > O, or T-k'Tkq k/2 if k < 0. Assuming 

(1.6) holds, it is then simple to sum the two geometric series and check that 

Wa¢(1)  = 1. 

This completes the proof of Theorem 1.1. | 

We turn now to the proof of Theorem 1.2. Fix an element f E C ~ ((B2 N 

K2)\K2) ,  and extend f to Ind(~). Then, since f is locally constant, it follows 

from (2.1) that the integrand on the right in (1.5) equals 

- 1  if laiR is sufficiently small; lallF/2~l(a)a-l(a)f( O 01) 

]alF1/2~2(a)a_l(a) f (01 01) if la]F is sufficiently large. 



144 D. BUMP, S. FRIEDBERG AND M. FURUSAWA Isr. J. Math. 

Hence the integral (1.5) is equal to an integral over a compact set plus two 

integrals giving geometric series, whose values have analytic continuation to the 

region A. This gives the analytic continuation of W, and it only remains to be 

seen that it represents a Waldspurger functional. Thus we must show that with 

t E T~(F), W(71"2(t ) f - -  a(t) f )  = O. It is clear that this is true when (1.6) is 

satisfied, and that the left side is analytic, so this is true for all (71,3'2,T) E A. 

This completes the proof of Theorem 1.2. | 

3. P r o o f  of  the  analyt ic  cont inuat ion and  functional  equat ion for the  

Bessel model  

In this Section we shall prove (most of) Theorems 1.3 and 1.4. The proof of 

the continuation in the parameters ai and of the functional equation is based on 

homomorphisms from GL(2, F) into G, similarly to Jacquet's proof of the analytic 

continuation and functional equation of the Whittaker functions on Chevalley 

groups [Ja]. Jacquet's method suffices to give most of the functional equations, 

but an extra step is needed (different in the nonsplit and split cases). One 

then applies Hartog's theorem. At this point, we will have proved Theorems 1.3 

and 1.4 except for one point, namely the meromorphic continuation in the split 

case outside the region q-l~2 < min(i/~i ' [fl[-1). This meromorphic continuation 

follows from the explicit formula in Theorem 1.6, or from Theorem 1.7; so for 

this minor point, the proof will be completed in subsequent sections. 

Our proof will follow to the extent possible the notation and organization of 

[BFG], where a similar method was used to study another unique functional. 

First, we recall two well-known lemmas. To give the first, let w E f~ be a Weyl 

group element represented by the permutation matrix w (we shall frequently 

abuse the notation and write w E f~). Let N denote the full subgroup of upper 

triangular unipotent matrices in G. Given a character X as above, let w x be 

the character satisfying ~x(a) = X(w-law) for all diagonal a E G. Define the 

intertwining operator T~: Ind(x ) -~ Ind(Wx) by the integral 

(3.1) (T~o~)(g)= f ~(w- lng)dn ,  

Nw\N 

where Nw = N n w N w  -1. Given an unramified character X as above, let a~ be 

the diagonal matrix in G 

a .  = (~1 , - . .  , ~ . ,  1 , ~ ; 1 , . . .  ,ai-1)- 
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Order the roots of SO(2n ÷ 1,C) so that N corresponds to the positive ones. 

Then one has ([Ca2], Section 6.4) 

LEMMA 3.1: The intertwining integral (3.1) is absolutely convergent iflr(a~) [ < 

1 for all positive roots r of SO(2n + 1, C) such that w(r) < O. Moreover, Tw 

varies holomorphically with X. and has meromorphic continuation to the space of 

all unramified characters. 

The second lemma concerns the G2 = GL(2, F) Whittaker function. As in 

Section 1, given two unramified quasicharacters ~1, ~2 of F x , ~i(w) = 7i, define 

a character ( of the standard Borel subgroup of G2 by equation (1.3). Let r2 -- 

Ind(~) be the normalized induced representation of G2, and ¢~ be the K2-fixed 

vector such that ¢¢(I2) = 1. If [71[ < ['Y2[, let Wh¢ be the Whittaker function 

(3.2) W h ~ ( g ) - - / ¢ ~  ( ( 1  1 )  (1  1 ) g )  ¢(x)dx. 

F 

Then one has 

LEMMA 3.2: 

(1) The Whittaker function Whe, originally defined by the integral (3.2) when 

[71 ] < ]'Y2 ], has a meromorphic continuation to all nonzero complex 71,72. 

Moreover, the function 

Wh~(g) -- (1 - " ) ' l ~ , 2 - 1 q - 1 )  - 1  Whe(g) 

is holomorphic in (C x )2 and is invariant under the interchange of "yl and 
"Y2 . 

(2) Let-y~ = ( l+e)  max(J3,1[, [0'21), "r~ = ( l+e)  -1 min(['yl[, ['Y2[), where e >_ 0 

is chosen so that ~/~ ~ ~[~. Define corresponding unramified quasicharac- 

ters ~ for i = 1,2 by ~(w) -- -y~. Then 

I Wh¢(g)l << I¢¢'(g)l 

uniformly in g, where ¢~, is the normalized K2-fixed vector in Ind(~,  ~) .  

Just as the continuation of the Waldspurger function Wa~ is deduced from 

its evaluation, Lemma 3.2 may be deduced from the explicit evaluation of the 
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Whittaker function Wh~. Assuming 1711 < 172h a computation shows that the 

integral (3.2)is zero if g = ( o k ~ )  with k < 0, and is given by 

( (  'cUk 01) ) "/lkq" 1 -- '~'2k q" 1 
Wh~ 0 = q-k~2(1 -- 71"y21q-1) 71 -- Y2 

if k _> 0. The Lemma then follows. 

We give next a third Lemma, concerning the convergence of the integrals which 

arise in the consideration of the split case. Let X be an unramified character as 

above. We will be concerned with the following w E f~: w = wo and w = 

( j , j + l ) ( 2 n - j + l , 2 n - j + 2 ) W o  for 1 <_ j _< n - 1 .  Let w be one of these 

permutations, and factor w -1 as w -1 = w'-l(n, n + 2). Set U~ = U A wlVw -1, 

where N is the unipotent radical opposite to N. Also, define the the complex 

number a by the equation 

LEMMA 3.3: 

)(' (W"--lt(uT)W p) :0 ' .  

(1) Letw = w 0  orw = ( j , j + l ) ( 2 n - j + l , 2 n - j + 2 ) w o  with 1 < j < n - 1 .  

Then for ~ E Ind(x), the integral 

(3.3) f ffJ(w-ln(1)ut(a))  A-1 (a )dud×a  

F× U~ 

is absolutely convergent provided 

< ql/2 min(l l, I~-11) 

(2) 
and provided that the intertwining integral T~o, ( ~) converges absolutely. 

Let w = (n - 1,n)(n + 2, n + 3)w0. Then for • E Ind(x), the integral 

(3.3) is absolutely convergent provided 

iott< ql/2 min(lfll, i~-ll) 

and provided that the intertwining integrals Tw(~) and Tw, (~) converge 

absolutely. 
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Proof'. Suppose first that  w -- w0 or w = (j , j  + 1)(2n - j ÷ 1,2n - j + 2)w0 

with 1 _< j < n - 1. We may interchange u and t(a) in the above integral. We 

have w - i n ( l )  t(a) u = w '-I  (n, n + 2) n(1) t(a) u. A computation similar to (2.1) 

shows that 

{ t(a)n(a-1)~l(a) ifia[F~_ 1, 
(n ,n+2)n(1) t (a )=  t(a_l)t~2(a) i f la iF > 1 ' 

with t~l(a), t~2(a ) in K of the form 

In-1 , )  
In-- 1 

Since matrices of this form normalize U~, we may move the ~i(a) to the right 

in the integral (3.3). Using the condition • E Ind()() and comparing with the 

definition (3.1) of the intertwining operator T~o, (note that for these w, U~, = 

Nw, \N),  one sees that  the integral (3.3) is absolutely bounded by the sum of the 

two integrals 

S [c~[ord(a)[A-l(a)] ]a[ 1/2 I(Tw, g2)(~l(a))ldXa 

lalF_<l 

and 
f [a[_ord(a)[A-l(a)[ [a[F 1/2 [(Tw, q2)(n2(a))] dXa. 

N~>I 

Since (Tw, k~)(g) is a locally constant function, it is absolutely bounded on K. 

Hence both integrals are bounded by geometric series, which converge under the 

hypotheses of the Lemma. 

Suppose instead that  w = ( n -  1, n)(n + 2, n + 3)w0. Consider first the contri- 

bution from ]air _> 1. We have 

w - l n ( 1 ) u t ( a )  = 

and n(a -1) E K. Moving the t(a) to the left and using the condition k~ C Ind(x), 

and changing variables u ~ ~ u, this contribution is majorized by 

f iod_ord(a lA_ (a)llalF f l(W , )((n, n + 

I~IF>I 
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Here we have passed to T~, since N~, \N  = (n,n + 2)U~(n,n + 2). As above, 

this integral converges provided Tw, (~) does and provided Ic~l < ql/2. We have 

a = (~n-1 for this choice of w. 

Consider next the contribution from lalF < 1. For notational convenience 

we shall treat the case n = 2 (so G = SO(5,F), c~ = c~1); the general case 

then follows without difficulty by carrying out the computation presented in 

the center 5 x 5 block, and using the convergence of the intertwining integral 

T~o(,~,n+2)(,~_l,n+a) (~) under the conditions of the Lemma. 

First, a matrix calculation shows that 

 n(1)t(a) = b ' on(2a) 0, 

where b e B satisfies 5~/2x(b) = 5~/2X(w'-lt(a)w'). Moving won(2a)wo e g 

past u and using k~ E Ind(x), one sees that  the integral is majorized by 

/ [a[~2 [O~[°rda [)~- 1 (a) I X 

lalF<l 
1 -(2ax + 2a2y) x + 2ay y -x2 /2  

1 0 0 - y  
/ ]~(w' 1 0 - x - 2 a y  won(a)wo)]dxdy. 

x,yeF 1 2ax + 2a2y 
1 

To majorize the inner integral, one computes the Iwasawa decomposition of the 

integrand. It is convenient to first make the variable changes x ~ x - ay and 

then y ~-~ (y - x)/a. Then one sees that  

- ( 2 x  - y12/2 \ 
1 0 0 - (y  )/a t2 

w I 1 0 ~2al( ) 1 nk 

1 t l  

with n E N, k E K,  and with 

It 1-1 = m x(1, I xlF), 

Itlt21-1 = max(l,  ]axlF , lax]2F, lYlF, laxylF, M2 ) • 

Since • is absolutely bounded on K, the integral is thus majorized by 

t2 

MF<l,x,yef t21 t l  I 
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This may be evaluated by breaking into the three pieces (1) lair < 1, ]aXtF < 1; 

(2) laiR < 1, laxlF > 1, lYlF <--laxlF; (3) la i r  < 1, 1 < laXlF < MP" The 

integral over each subdomain is a geometric progression. The first converges for 

Io4 < ql/21t31 and Ic~21 < 1, the second for lal < ql/21131 and 1~21 < 1, the third 

for Ic~ I < ql/21fll, lac~21 < 1 and la21 < 1. Comparing these conditions to those 

for the convergence of T~ and T~,, one sees that the Lemma holds. | 

This proof may also be rephrased by using the isomorphism of PGL(2, F) with 

SO(3, F) to write the integral (3.3) as the Waldspurger integral of an intertwining 

integral, and then applying Lemmas 2.1 and Lemma 3.1. 

Observe that applying Lemma 3.3 with w = w0, so that w ~ = Wl, g = 1 and 

a = c~n, one finds that the integral (1.14) is absolutely convergent in the region 

(1.15), as claimed. 

To prove Theorems 1.3 and 1.4 we now proceed in two stages. First, using the 

standard functional equation for the GL(2) p-adic Whittaker function (Lemma 

3.2), we shall establish functional equations under the transpositions (j, j + 1) E 

12, 1 < j < n - 1. The proofs of these results also give the analytic continuation 

to certain unions of Weyl chambers properly larger than the original region of 

convergence. Then, using Theorem 1.1 in the split case and the invariance of 

the G2-spherical function in Ind(~l, ~2) under the interchange of ~1 and ~2 in the 

nonsplit case, we obtain a functional equation for the Weyl group element taking 

(~n to (~1 and fixing the rest. Since these two elements generate f~, these steps 

imply that 7-/x is invariant under f~. 

To obtain the functional equations under the transpositions ( j , j  + 1), 1 < j <_ 

n - 1, let ~j be the embedding of GL(2, F) into G given by 

I j -1  det(g)-lg 

g ~ I2~-2j-1 

I j_ l  

where -I )1 g C - i  )1 Let denote if is split wi is 
nonsplit. Let vl = ( j , j  + 1)(2n - j  -t- 1,2n - j  +2),  and factor w = vlv2. Let B2 

and U2 be, as above, the subgroups of GL(2, F) consisting respectively of upper 

triangular and of upper triangular unipotent matrices, and let Bj and Uj be the 

subgroups of G given by 

Bj = ~j(B2), Uj = v ;  1 ~j(U2)v2. 
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For uj E Uj, write v2 uj = t j(Sj)v2.  Let U~ and B} be the complementary 

subgroups in U and B to Uj and Bj,  respectively, so that U = UjU~ and B = 

BjBj. (uniquely). Note that vl and tj(U2) normalize B} and fix (I)xls}. Let 
] # t u E U, t E T,  a E G. Factor u = ujuj,  uj E Uj, uj E U~. Applying the 

Iwasawa decomposition, for g E G, we may write v2u}tg = b}bja, with bj E Bj,  

b} E B}, g E K (we suppress the dependence of b} and by on u~-, t, and g from 

the notation). 

Suppose first that  T is nonsplit. Then with the above notation we have 

wlutg =-- VlV2UjUjt 9 

= vl~j(~j) ' v2ujtg 

= Vltj(aj) b;-bj~. 

Since ~x is right K-invariant, we may thus express Hx(g ) as the iterated integral 

(3.4) 

iSiS ] b' u'-ldu#jdt. Hx(g  ) = (~x(Vltj(ltj)bj) OS(ltj) -1 d'ttj ~x(  j) OS( j) 

T(O) U; [Uj 

However for h E G, it follows from (1.11) that the function ¢: GL(2,F) --+ C 

given by ¢(a) = Cx(tj(a)h) is in the space Ind(xy~dt j -n ,  x~-l/fi-n), where tt is 

the quasicharacter of F x given by #(x) = IXiF. Accordingly the inner integral in 

(3.4) is a constant multiple of the GL(2) Whittaker function associated to this 

representation. Applying Lemma 3.2, we obtain the analytic continuation of the 

function 
1 

--1 1 Hx(g) 1 - o~jctj+lq- 

to the region Cj of (C x )~ defined by the inequalities 

(3.5) I0111 < ' ' "  < IOtj_ll < min(laj l ,  Ic~j+ll) <_ ma~x(Io/jl, Io~j+ll ) 

< Icu+21 < . . .  < Icon-l[ < min(la,~[, Ic~i[)  

if 1 < j < n - 1, and defined by the inequalities 

(3.6) lal l  < 1~21 < . . .  < [ ~ - 2 1  < min( ian- l l ,  I~nl) ~ m a x ( l ~ - l ] ,  I ~ l )  < 1 

if j = n - 1, and the invariance of this function under (j, j + 1) there. The 
region Cj is obtained by replacing the inner integral by the estimate given in 
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Lemma 3.2, part (2), and comparing with the intertwining operator T~I ,  whose 
convergence is given in Lemma 3.1. The difference in inequalities is due to this 
comparison; note that for 1 < j < n - 1, v2 is a product of transpositions 

(1 ,2n  + l)  . . .  ( j  - l , 2 n -  j + 3)(j ,  2 n -  j + l ) ( j  + l , 2 n -  j + 2)(j  + 2 , 2 n -  j ) . .  . ( n - -  l , n  + 3), 

while for j = n - 1, v2 includes a four-cycle 

(1, 2n  + 1 ) . . .  (n - 2, ~ + 4 ) ( ~  - 1, ~ + 2, n + 3, ~) .  

Also, let us remark that if 1 _< j < n - 1, then the region Cj properly contains 

the original region of convergence Co, while if j = n - 1, Hartog's theorem gives 

at once the analytic continuation of Hx to Co U Cn-1. 

Suppose now that T is split. Let u, uj, u~j, ~tj be as above; note that Uj = 

~j(U2). We have 

won(1)ut(a) -~ VlV2Uj(u-fln(1)uj)u}t(a) 

-= Vltj(~tj)v2(u-fln(1)uj)u}t(a). 

Moreover, f o r u j  = u j ( x ) : =  Lj ( (1  ~ ) ) ,  a calculation shows that u-fln(1)uj = 
n(1)u~ with u~ e U~ and Os(uj)-lOs(u~) = ¢ ( - x ) .  Using the Iwasawa decom- 

position, write v2n(1)u~jt(a)g = b~jbj~, with bj e Bj, b} e B}, ~ e K (once again 

we suppress from the notation the dependence of b} and bj on u~-, t(a), and g). 

Then the integral (1.14) representing Hx(g ) becomes 

~ f F f l 

J J L  J J F x U' F 

The inner integral is once again a GL(2) Whittaker function. Applying Lemma 

3.2, we obtain the analytic continuation of the function 

1 

1 --  OLjO~j+lq- 

to the region C} of (C x )n defined by requiring the inequalities (3.5) and in 

addition the inequality 

[a,~[ < qi/2 min(ij3[ ' i~-1 I) 
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if 1 _< j < n - 1, and defined by requiring the inequalities (3.6) and in addition 

the inequality 

min(lan_:l ' tani ) < q:/2 min(if~l ' lfl-:l) 

if j = n - 1. We also obtain the invariance of this function under (j, j + 1) there. 

The region C~ is obtained by replacing the inner integral by the estimate given 

in Lemma 3.2, part (2), and applying Lemma 3.3. For later use, we denote the 

original region of convergence given by (1.15) as C~. 

It remains to obtain the functional equation under the interchange an ~ a~: .  

To obtain this, let ~,~ denote the homomorphism of GL(2, F)  into G given by 

(3.7) 

1 ( (ad - bc)In_: 

ad - bc 

\ 
a 2 ab -b2/2 | 
2ac ad+bc -bd ) 

- 2 c  2 -2cd d 2 
(ad -  bc)In_: 

Consider first the case that T is nonsplit. Since w: fixes T, the integral (1.12) 

representing H× (g) is expressed as an iterated integral 

Now for h E G, the function ¢: GL(2, F)  --+ C given by ¢(a) = ~x(~,~(a)h) 
is in the space Ind(xn, X~I). Recalling that en gives the isomorphism between 

PGL2(F)  and SO(3, F),  one sees that the inner integral in (3.8) is a multiple of 

the nonsplit Waldspurger functional on PGL2 iF),  evaluated on a suitable right- 

translate of the spherical vector in this induced space. As explained in Section 1, 

it is thus a multiple of the spherical function in Ind(xn , X~I). By the invariance 

of this spherical function under the interchange of Xn and X~:, we conclude that 

H×(g) is invariant under an ~ a~  1 in the domain (1.13). 

Consider instead the case that T is split. Factor wo = w:w2 with w2 = 

i n, n + 2). In this case the integral (1.14) is an iterated integral of the form 
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Once again using the homomorphism ~,~, one sees that the inner integral is a 

multiple of the split Waldspurger functional computed in Section 2, applied to 

a function in Ind(xn, X~I). Note that  this integral is absolutely convergent pro- 

vided Ic~nl < ql/2 min(i/3t ' 113-11). Applying Theorem 1.1 and arguing as above, 

we obtain the invariance of the function 
(1 - anj3q-1/2)(1 - anj3-1q -1/2) 

(1 - c~2q -1) Hx(g)' 

under an ~-~ Oln I in the domain (1.15). 

To complete the proof of Theorem 1.3, let C be the set of a -- ( a l , . . .  ,an)  E 

(CX) n such that  at most one of the equalities [ai[ -- [aj[, 1 ~_ i < j ~_ n, and 

[ai[ -- laj1-1, 1 _~ i ~_ j < n, is satisfied. It may be deduced from Hartog's 

theorem that  any analytic function on C can be extended to an analytic function 

on (C × )~, and so it is sufficient to extend the function 7/x(a ) to the domain C in 

such a way that  the corresponding functional equations are satisfied on C. Now if 

a E C, then there is an w E f~ such that wa is in Ck for some k, 0 < k < n -  1. We 

then define 7/x(a ) to equal 7-/~x(a ). This is well defined by the above discussion. 

It is apparent that this extends ~x(a)  to an analytic function of C satisfying 

the corresponding functional equations, as required. This completes the proof of 

Theorem 1.3. II 

The proof of Theorem 1.4 is similar. Suppose first that  ,k is chosen so that  

q-l~2 < min(lfl[, [fl[-1). Then using the regions Cj in place of Cj, the argument 

in the paragraph above gives the analytic continuation of 7/× to a E (C x )'~, and 

the functional equation there. This completes the proof of Theorem 1.4, except, 

as we have noted, for the point of the meromorphic continuation to all ai and 
fl, and this point is a consequence of the explicit formula in Theorem 1.6 or of 

Theorem 1.7. | 

4. Expl ic i t  fo rmulas  for t h e  Bessel  m o d e l  

The evaluation of the Bessel model given in Theorems 1.5 and 1.6 is obtained 

by applying the method of Casselman and Shalika [Ca1], [CS]. This method was 

also used in Section 2. A similar evaluation is carried out [BFG]; however, the 

particulars are different in the case at hand, and the cases T nonsplit and T split 

are once again different from each other. Throughout the proofs we shall assume 

that  X is regular, i.e. ~X ~ X for all nonidentity w E fL The general case then 

follows from the analytic continuation given in Theorems 1.3 and 1.4. 
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Let B be the Iwahori subgroup of K,  consisting of integral matrices which 

are upper triangular invertible modwO. It follows from the Iwasawa decompo- 

sition of G and the Bruhat decomposition over O/wO that the space of right- 

Iwahori-fixed vectors Ind(x) s is ll21-dimensional; moreover, a basis is given by 

the functions ¢~ defined by 

(I)×(b) if w = w', 
¢,~ ( bw t - lbl) = 0 otherwise, 

where b E B, w E g/, bl E B (note that  this differs from Casselman's notation in 

[Call, but is consistent with [BFG]). 

If X is regular, then it is shown in [Call, Section 3, that the linear functionals 

on Ind(x) B given by f ~ (Twf)(I2n+l) are linearly independent. Here T,~ is 

the intertwining operator defined in (3.1). Let f~, w E fl, be the dual basis, 

characterized by 
1 if w = w I, 

(Twfw')(I2n+l)= 0 otherwise. 

Suppose first that  T is nonsplit. Let d = dk be as given in Section 1, and 

suppose that  all ki > O. Let Fd be the function 

Fd(g)---- / / d)x(gutd)dudt. 
T(O) unK 

We will show that Fd is right Iwahori invariant; then we Clearly Fd E Ind(x). 

may write 

(4.1) Fd(g) ---- ~ R(d, w; X) fw. 
wE~ 

To prove the Iwahori invariance of Fd, let us denote by }3 the group of elements 

of K which are upper triangular modulo w, and whose middle 3 x 3 block is 

congruent to the identity modulo w. We will prove first the invariance of Fd by 

the group T(O) E. This group admits an "Iwahori factorization" as a product 

(U O K) T(O) To U' (w), 

where To is the group of diagonal matrices in Z, and U'(w) is the group of lower 

triangular matrices in }3 whose middle 3 x 3 block is the identity. Normalizing 
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the Haar measure on each compact group so that  the volume of the group is one, 

we have 

f f f f f 
T(O) F, T(O) UnK To U'(v~) 

The left side is clearly T(O) Z-invariant. On the right side, d-lhvd E K, so we 

may omit  h and v from the integration. Thus this expression equals Fd(g). This 

proves that  Fd is invariant under T(O) ~. We have 

(4.2) 

when b E B(F) and a E T(O)E. We will deduce invariance by the group 

~n(K2) ~ (which contains the Iwahori subgroup) from the fact that  the canonical 

map 

(4.3) B\G/T(O) Z --+ B\G/~n(K2)~, 

is a bijection. To see this, we note that  since en(K2)E contains the Iwahori 

subgroup, every double coset in B\G/~n(K2)E contains a Weyl group element 

w; so what we must show is that  BwT(O)~ = Bw~n(K2)E. We consider an 

element bw~n(k)a of the right side, where b E B, k E K2 and a E E. We 

can write k = ~+t + = f l - t -  where t + are in T~(O), fl+ is upper  triangular 

a n d / ~ -  is lower triangular. Then one of wen(fl+)w -1 is upper triangular, so 

bwen ( k )a = b' w~n ( t+ )a where b' = bwen (;3+ )w - ] , which shows that  this element 

lies in BwT(O)~.  Thus (4.3) is a bijection. We may now prove the Iwahori 

invariance of Fd. If g E G and a E ~n(K2)E, we write ga = bga' with b E B and 

a ~ E T(O) ~. We note that  b is conjugate to aa '-1 E K, and so the eigenvalues 

of b are units, and x(b) = 1. I t  thus follows from (4.2) that  Fa(ga) = Fd(bga') = 

Fd(a). 
Let us compute the coefficient R(d, w; X). It  equals 

(TwFd)(I2,~+l)= / f f ¢x(w-Xnutd)dudtdn 
Nw\N T(O) UnK 

= f T'°(Vx)(td)dt" 
T(O) 
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However, let @+ denote the set of positive roots of SO(2n + 1, C), and if r G @+, 

let t~ be the corresponding embedding of SL(2, F)  into G, and 

a r  - :  t,r Vg_  1 . 

Then it is shown in [Call, Theorem 3.1, that 

T,~(~) x) = c~(x) ~)~x, 

where @'~x is the standard nonramified vector in Ind('~X), and the coefficient 

cw (X) is given by 

(4.4) 

We find that  

- x ( a , )  ]" 
r E ¢  + 

w(~)<0 

R(d, w; X) --- cw (X) a~× (d), 

where 

a ~ ( d ) =  / ~x(td)dt.  
T ( O )  

Let ~,, be the homomorphism from GL(2, F) into G given by equation (3.7). 

Factor d = d'~n(d") (all these matrices depending on the ki) with 

w k', wk~, 1, w -k'~, , w -k') d ~ = diag( . . .  , 1,1, . . .  

and 

Then one sees that  

Now if 

d l ' = (  wk, 1)" 

a~x(d ) -- ~XS~/2(d ') / ~)~(t en(d")) dt. 
T ( O )  

" (x , , - . . ,  x,-,)= ' ,  x,.,), 

then the function g ~-+ ~ ( ~ , , ( g ) )  lies in the induced space !nd(x ' ,  X~-I). Recall- 

ing that  tn identifies PGL(2, F)  with SO(3, F) and applying the analysis of the 
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nonsplit Waldspurger functional in Section 1, one concludes that  this last integral 

is equal to the spherical function on GL(2, F)  in this induced space, evaluated at 

d ' .  This value is given by the Macdonald formula (see [Call). Substituting this 

formula, we obtain 

(4.5) f l  I t a,,,x(d ) = (1 + q-1)-1 qe, Xn+l_i(vok,) 
i=2  

t--1 - 1  t ~U k l  _ i - 1  (XIn( w ) - x n  (w)q )Xn( ) (Xn ( w ) -  X~(w)q -1)XIn(w) -k' 
X 

- 

This completes the evaluation of R(d, w; X). 
If f E Ind(x) with X dominant, let 

L(f) = f f(wlu) Os(u) -1 du. 
u 

This integral converges absolutely by comparison with T~l(f). Then, by (1.12) 

and (4.1), we have 

(4.6) H×(d) = L(Fd) = ~ R(d,w;x)L(fw). 
w e n  

It is clear from this formula and our evaluation of R(d, w; X) that h(k l , . . . ,  k,) 
is a linear combination of functions of the a~ which lie in exactly one fl-orbit. 

To complete the proof of Theorem 1.5, we shall compute the full contribution to 

h(k i , . . . ,  kn) of the terms on the right of (4.6) with w = wo, w = wl. By the 

computation of R(d, w; X) given above, no other w E fl contributes a rational 

function of the form 
i . _ k  I 

O~? k" "'O~n 1 

times a function independent of the ki. Hence, by Theorem 1.3, we will have 

computed one piece of the ~-orbit, and the final formula is then the fl-symmetric 

sum of these terms, taking into account the normalizing factor in the functional 

equation of Theorem 1.3. 

To compute the contribution of the w = wo, wl terms to (4.6), we need the 

following lemma relating the two bases for the Iwahori fixed vectors, {¢w} and 

{fw}. 
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LEMMA 4.1 :  

(1) Cwo = fwo. 
(1--q-1)o~ 

(2) ¢~, : fwl ~- 1-c~ f~o. 
(3) n(f~o) = O. 
(4) L(fw,) = 1. 

Proof." For w ~ E ~ we may write 

(4.7) ¢~'(g) = Z cx(w' w') f~(g), 
wE~ 

where the coefficients c× are given by 

c~(w,w') = T~(¢~,)(I2n+l) 

= / Cw'(w-ln)dn" 
Nw\N 

This integral is zero unless w-in E Bwt-IB for some n E N~\N. If w' = w0, 

it is easy to see that  this may happen only for w = w0 and n E N M K; part 

(1) follows. Similarly, if w' = Wl, then cx(w,w' ) = 0 unless w = w0 or w = Wl, 

and c×(wl,Wl) = 1. Finally, to determine cx(wl,wo), it suffices to take g in 

(4.7) to be of the form ~,~(g'), with g' E GL(2, F).  In that case the ¢~, and 

fw, necessarily match the analogously defined GL(2) functions in Ind(xn, X~I), 

and the determination of this coefficient follows from the analogous statement on 

GL(2, F) ,  which is equivalent to (2.5). 

To prove the remaining parts of the Lemma, it suffices to show that 

(4.8) L(¢~o) = 0, L(¢~1) = 1. 

However, for w e ~2, 

L(¢~) = / ¢~(WlU) Os(u) -1 du. 
, 2  

U 

A matrix calculation shows that wlu E Bw-IB is impossible if w = w0, and 

holds when w = w 1 if and only if u E U Cl K. Thus (4.8) holds. | 

Combining (4.6), Lemma 4.1, and the evaluation of R(d, w; X), one finds that 

(4.9) Hx(d ) =C~l(X)a~lx(d)+ ~ R(d,w;x)L(f~). 
wEf~;w~wo,wl 



Vol. 102, 1 9 9 7  WALDSPURGER AND BESSEL MODELS 159 

The final value for 7-/X (d) may now be obtained by taking the first term on the 

right hand side of (4.9), multiplying by the normalizing factor in the functional 

equation of Theorem 1.3, and symmetrizing with respect to the action of ft on 

the parameters a~. To do this, observe that (4.4) gives 

- aiq (4.10) cwl (X) = IT  (1 - oqoljq-1)(1 - oqtlj-lq -1) 1 2 -1 
, <i<j<,~ (1 - aic~j) (1 - a,c~}-') ,<~<,H 1 _ ai2 

Substituting this formula and (4.5) into (4.9) and making use of Weyl's identity 

(1.17), the explicit formula follows. 

This completes the proof of Theorem 1.5. | 

We turn to the proof of Theorem 1.6. Suppose that T is split, so that the Bessel 

functional B is given by equation (1.14). Recall that N denotes the unipotent 

radical of the standard Borel subgroup of G. Let N(O) = N N K. Given k = 

(k l , . . .  , kn) with all ki >_ 0, define 

Pk(g) = f ~x(gndk) dn. 

g(o) 

Then using (4.3), an argument similar to the one given there demonstrates that  

Pk E Ind(x) ~. 

Though we will ultimately use the Casselman-Shalika method, we first estab- 

lish the following Lemma, which implies that the determination of h(kl , . . .  , kn) 

follows from the determination of the quantities B(Pk). For convenience, let us 

set 

H(k) := H×(gk) B(k) :-- Bx(Pk ). 

Then we have 

LEMMA 4.2: Let k = (kl , . . .  ,k,~) with a11 ki >_ O. 

(1) Suppose kl = 0. Then H(k) = B(k). 

(2) Suppose kl > 0. Then 

H(k) = (1 - q-1)-1 (B(k) - q- l~S(k l  - 1, k2 + 1, k3,.. .  , k,)). 

Proo~ Comparing the definitions, 

B(k) = / B (~r (n(x)d~) ~x) dx. 

o 



160 D. BUMP, S. FRIEDBERG AND M. FURUSAWA Isr. J. Math. 

A matrix calculation shows that if x E O, then n(x)dk equals 

dk n(va-kxx) if x E wk~O, 

t(x) n(1)dk,-m,k2+m,k3 ..... k,, t(wmX -1) i fx  E WmO x, 0 < m < kl. 

If x E wk~O then n(va-k~x) E K; moreover ~x is K-fixed. Factoring 

dk = t(w k') d0,k,+k2,k3 ..... km 

and using property (1.10), one thus obtains 

f B(~r(n(x)dk)¢x) dx = q-k'flk'H(O, kl + k2,k3,... ,k,~). 

vakl O 

Similarly if x E varnO×, then t(wmx -1) C K. Arguing similarly, one then finds 

that 

(4.11) B(k) = q-k~k~H(O, kl + k2, k3,... , kn) 
k l - 1  

+ ( 1 - q - 1 )  E q - ' ~ f l m H ( k l - m ' k 2 + m ' k 3 ' " "  ,kn). 
m-~O 

If kl = 0, Lemma 4.2, part (1), follows at once from (4.11). For kl > 0, equation 

(4.11) also implies that 

(4.12) q-lj3B(kl - 1, k2 + 1, k3,... , kn) = q-kl~kl H(O, kx + k2, k3,... , kn) 
k t - 1  

+ (1 - q-l) E q - '~mH(k l  - m, k2 + m, k 3 , . . .  , kn). 
rn=l 

Subtracting (4.12) from (4.11), part (2) of the Lemma follows. 

Write now Pk in terms of the Casselman basis {f~}: 

Pk = s ( k ,  w; 
weft 

The coefficients S(k, w; X) are given by 

S(k ,w;x )=  / Pk(w-ln)dn 

N w \ N  

= / (~x(w-lndk) dn 

N w \ N  

(4.13) = c~(x)(~X~/2)(dk), 

| 
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where c~ (X) is defined by equation (4.4) above. 

In this case, unlike the nonsplit case, no two terms for different w contribute 

the same rational function of the ai. Hence it suffices to determine B(/wo); the 

value of B(Pk) is then obtained by symmetrization, using the functional equation 

of Theorem 1.4. The value of B(f~o) is given by 

LEMMA 4.3: Suppose [anti[ < ql/2. Then 

B(f~,o)-- ( 1 -  OLn~q--X/2) -1 

Proof: Suppose [oln~] < ql/2. Since T normalizes U and fixes Os, 

S(fwo ) : / / :w°(Won(1)t(a)u)OS(~)-x ~-l(a)dud×a.  
F × U 

Suppose that won(1)t(a)u E BwoB. Then (t(a-1)n(1)t(a))u E woBwoB. This 

relation implies that u E U M K and that t(a-1)n(1)t(a) E K, hence laiR > 1. 
Thus 

B(fwo) = / fwo(Won(1)t(a)) A-l(a) dXa. 

ialF > l 
But 

and for lalF >_ 1 the last factor t(a)-ln(1)t(a) is in B. 

invariant, this gives 

w0 n(1) t(a) = wo t(a) (t(a)-ln(1)t(a) ), 

Since fwo is right B- 

Hence 

fwo (won(1)t(a) ) = .fwo (wot(a)Wo 1" wo) 
. ~I/2 

: ( t ( a - 1 ) )  • 

O 0  

BCfwo) = ~ txn-rnr~rnl° {t---m~2 
~'n,--'--O 

: (1--~n~q--I/21--1 ~ 

as claimed. | 

To conclude the proof of Theorem 1.6, observe that 

B(k) = Bx(P~ ) = f Hx(n(x)dk ) dx. 
* 1  

0 
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By Theorem 1.4, this satisfies a functional equation under the action of f~ on the 

a~. Similarly to (4.10), (4.4) gives 

a iq  
,[--[ (1 -- a i a j q - 1 ) ( 1  - ceiaf lq -1) 1 - 2 - I  

l(_i<j<_n ~l. (1--OliOlj)(l--aiOl; 1) l < i < n  H 1-- a i: 
Cwo (X) 

Substituting this expression into (4.13) to obtain S(~, w0; X), and symmetrizing, 

one obtains the pleasant formula 

1-Iin__l (1 - ai~q-1/2)(1  - a i ~ - l q  -1/2) 
--  n 1 -- Hlz,<s_<~(1 ~ q - 1 ) ( 1  - ~o~;~q-1) I-L=I( ~ q _ ~ ) B ( k )  

I __let -- 
A (1 - c , , ~ 3 - 1 q - 1 / 2 ) a 1  " '~ 

_-- qek A - l x  

r~--I / 
r-r  -k~-i,~ _ _ 
11 an+~_d" -- ~ 3 q - 1 / 2 ) ( 1  -- ~ 3  ~q ~/2) . 
i=l 

Then applying Lemma 4.2, one obtains without difficulty the expression for h(k)  

given in Theorem 1.6. (Note that  if l:1 = 0 then in fact one obtains the formula 

h(0, k2, . . .  , k,~) = q~k A-1 x 

(o ,) n l ( 1  - -  Oen~-lq-1/2) H ~i-k~+l-i-n-l+i (1 - -  Oql~q-1/2)(1 -- O~i~-lq -1/2 • 
i = l  

However, expanding the second factor, the term 

n--1 
anl(--(~n~-lq-1/2) I I  ~k '+ l - ' - n - l+ i  (1 -- Oq~q-1/2)(1 -- Oq13-1q-1/2) 

i=1 

is independent of am and hence its alternator is zero. Thus one is in fact left 

with (1.18). A similar argument shows that (1.18) is equal to the formula in the 

Theorem when kl = 0.) 

This completes the proof of Theorem 1.6. | 

5. Continuation of  the Bessel  functionals: The application of  

Bernstein's  theorem 

Bernstein [Be] gave a powerful new method for the meromorphic continuation of 

functionals satisfying a suitable uniqueness property; in the case at hand, this 

uniqueness is the uniqueness of the Bessel model, which, as we have already 
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noted, was proved by Novodvorsky [No]. Bernstein's result will appear as an 

appendix to a book in progress of Cogdell and Piatetski-Shapiro; in the meantime, 

a statement (but no proof) may be found in Gelbart and Piatetski-Shapiro [GP]. 

In this Section we will show that Bernstein's theorem implies Theorem 1.7. We 

assume familiarity with either [Be] or its paraphrase in [GP]. 

Let X = C °° ((B fq g ) \ g ) .  Given the ai, we may identify X with V~ by 

extending an element • E X uniquely to an element of Vg x E Vr satisfying 

(1.11). Let D = (C×) ~+1. If ( a l , . . - , a n , / ~ )  E D, we consider functionals B 

which satisfy the following two conditions: 

(1) B is a Bessel functional, 

(2) B ( ¢ × ) =  1. 

We claim that  these conditions may be expressed by a polynomial system of 

equations (in Bernstein's sense) in the parameters ( a l , . . .  , an, fl). To see this, 

note that  if q2 E X and (with the notation as in (1.10)) if t E T, u E U, then 

there exist ~ j  E X and polynomial functions f j  (j = 1, . . .  , N) of the ai and/~ 

such that  7r(tu)~ x = ~ fjkvj, x. Thus (1.10) may be expressed by the polynomial 

equation 
N 

Z fjB(k~j) - Os( tu)B(~)  = O. 
j=l 

It is also evident that  condition (2) above is a polynomial equation. By Novod- 

vorsky's theorem, the solution, if it exists, is unique, and we have proved that  

a solution exists on a non-empty open subset of D. Consequently Bernstein's 

theorem is applicable, yielding the meromorphic continuation of the functional 

B in the sense made precise by Theorem 1.7. I 

6. Bessel  periods of  Eisenstein series 

In this Section we present a global application of these formulas. (In fact, the 

application makes use of only a particular case of them, namely the formula 

(6.6) for the value of the local Bessel functional at the identity.) Accordingly, 

we now let F be a global field and A be its ring of adeles. Let 7r = ®Try be a 

cuspidal automorphic representation of GL(n, A). Let P be the standard maximal 

parabolic subgroup of G = SO(2n + 1) with Levi factor GL(n). Denoting by ~p 
the modular character of P,  let fs e IndpC~ A) (Tr ® ~-1/2)  (normalized induction), 
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and let 

(6.1) E(g, s, fs) = Ls(Ir, 2n(s - 1/2) + 1, V 2) E fs('Yg) 
~/EPF\Gp 

be the Eisenstein series attached to f, .  Here S is a finite set of places including the 

archimedean ones and those where lr is ramified, and Ls(~r, s, v 2) is the partial 

symmetric square L-function, which is the normalizing factor of the Eisenstein 

series. Let a, b and c be elements of F such that b 2 + 2ac is not a square. Let Q 

be the standard parabolic subgroup of G with Levi factor GL(1) x . . .  × GL(1) × 

SO(3), let U be the unipotent radical of Q, and let ¢ be a nontrivial character of 

A/F.  Let 0 be the character of U(A) defined by (1.9). Then Q(A) acts on U(A) 

and hence on its character group by conjugation; let R(A) be the subgroup of the 

stabilizer consisting of elements whose projection to the Levi factor of Q(A) lies 

in the embedded SO(3, A). We may naturally extend 0 to a character of R(A). 

Then R(A) is the group of adelic points for an algebraic group R which is the 

semidirect product of U with a one-dimensional torus T, which for simplicity we 

are assuming nonsplit--this is our hypothesis that b 2 + 2ac is a nonsquare. In 

this case, there exists a unique quadratic field extension K of F over which T 

splits. Let ~7 = @~v be the quadratic Hecke character of F attached to K. In 

this Section we will prove 

THEOREM 6.1: The integral 

f E(r, s, fs) O(r) dr (6.2) 
JR (F)\n(n) 

is an Eu]er product, whose local factor at a good place v equals 

(6.3) L(n(s - 1/2) + 1/2, ~r,) L(n(s - 1/2) + 1/2, 7r, ® z/~). 

If n = 2 this result is essentially due to B5cherer [B5] and Mizumoto [Mi] 

(these authors consider holomorphic Siegel modular forms on PGSp4 over Q, but 

the unramified local computation is the same for general base field and infinity 

type). The precise conditions to make v good are described below. 

We turn to the proof of Theorem 6.1. Unfolding the integral, we see that (6.2) 

equals 

- 1/2) + 1, V 2) E /R /R fs(~/ur) O(ur)dudr, Ls(~r, 2n(s 
~eP~\CF/aF Z \RA ~\R~ 
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where R 7 denotes the algebraic group R n 7-1P7.  One may show that  only the 

open orbit in P \ G / R  contributes, and we may take the representative 

/ 
= / (-1)  n 7 

\ I .  

Then "yR'7 -1 = U' is a maximal unipotent subgroup in GL(n), the Levi factor 

of P,  and the character 7u~/-1 ~-+ O(u) is nondegenerate; indeed, since b 2 + 2ac 
is a nonsquare, a # 0. It follows that 

f 
Ws(g) = [ f~(ug) 0(7-1u7) du 

du k\G 

lies in I n d ~ ( W r  ® 6p-U2), where W~ is the Whittaker model of 7r (relative to 

the appropriate character of its maximal unipotent group). Writing 

Ga s--l~2 G(F.)  
Indpa (W~r ® 6 P )=@Indp(F~)(W~r,v®dp 1/2 ) 

as a restricted tensor product over all places v of F,  where W~,v is the local 

Whittaker model of 7rv, there is no loss of generality in assuming that  Ws (g) is a 

pure tensor; thus we write Ws(g) = 1-I, Ws,,(g,). The integral (6.2) thus equals 

Ls(2n(s -1 /2 )  + l, Tr, V2) /n  W~(Tr) O(r) dr 
I\rA 

and hence is factorizable, with local factor 

(6.4) R We ~(Tr) O(r) dr. L(2n(s - 1/2) + 1, 7%, V 2) "~(F,,)\R(F,,) ' 

We compute this local factor at a good place. More precisely, suppose that  the 

finite place v does not ramify in K.  Then we compute (6.4) for any nonramified 

principal series 7r. with Satake parameters a l , .  • • , an, under the assumption that  
.¢ ,a(Fv),.~.~, @ 6~-112), normalized Ws,. is the unramified spherical vector in InCIp(F. ) i, vv~r,v 

so that  Ws,.(1) = 1. To carry out this computation we first make the further 

assumption that  lad < lai+1 I; the general case then follows by analytic continu- 

ation. (Note that  the assumption lai] < lai+11 is unrealistic for a representation 
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% which is a local component of an automorphic representation 7r, as this condi- 

tion violates the Ramanujan conjecture.) According to the results of Casselman 

and Shalika [CS], we may then write Ws,.(g) as 

l<S<j<_n 
1 Jn)ug)O("/-lu"/)du, 

where qv is the cardinality of the residue field at v, Jn is the n x n matrix with 

ones on the sinister diagonal and zeros elsewhere, and (I)×,v is the normalized 

spherical vector in the representation denoted (in the notation of Section 1) 

Ind (x l , . . .  , Xn), where Xi(Ws) = as q-n(s-1/2). Substituting this into (6.4), we 

obtain precisely the integral (1.12 i if the place v is inert in K, that is, if T is a 

nonsplit torus in Fv. If on the other hand the place v splits in K, we obtain the 

integral (1.14). To see this, one must remember to conjugate the torus so as to 

make it diagonal; and conjugating wl in this way produces w0n(1) as in (1.14). 

One sees that, in either case, the local factor (6.4) is equal to 

(6.5) H (1 --l--2n(s--1/2)~--I -~sajq~ ) H ( l_o~,o~; lqvl)  1Hx(1).  
l<_S<j<n l<_i<j<_n 

By Theorems 1.5 and 1.6, 7/x(1 ) = 1, so by Theorems 1.3 and 1.4 (with j3 = 1, 

and with ai q~n(s-1/2) replacing as), 

(6.6) Hx(1) = H (1-C~iC~jqvl-2n`s-1/2)) (1--°iS°z; lqvl)  × 
l<S<j<n 

f i  l + rJ~(Wv)Cq q v  n ( s - 1 / 2 ) - 1 / 2  

s=l 1 - c~ s q v  n ( s - 1 / 2 ) - l / 2  ' 

where the quadratic character rl ,(w,) equals 1 if v splits in K, and - 1  if v is 

inert. Substituting this formula into (6.5) and simplifying, we obtain the local 

factor (6.3) for v. II 

APPENDIX 
BY 

MASAAKI FURUSAWA 

The purpose of this appendix is to present another global application of the 

explicit formulas obtained in the preceding paper. Namely we give a new Rankin- 

Selberg integral of the L-function for SO(2n + 1) x GL(n). In their recent re- 

markable work, Ginzburg, Piatetski-Shapiro and Rallis [GPR] found ingenious 
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integral representations for L-functions for O(V) × GL(n) for any quadratic space 

V, any cusp form on O(V), and any n. But our construction is distinct from 

theirs. 

Let F be a global field. For a E F × , let (V~,q~) be a 2n + 2-dimensional 

quadratic space over F such that V~ has a basis {e l , . . .  ,en, fo, fl ,~,~,.. .  ,e l}  

(note the o rd e r )  and, with respect to this basis, the symmetric matrix of q~ is 

given by 

( 1 _ o )  . 
& 

Here J~ denotes the n x n matrix with ones on the sinister diagonal, zeros else- 

where. Let Ha = SO(V~) and G = {g • H,~ [ gfl  = f l}  -~ S O ( f ~ ) ( =  SO(2n+l ) )  

where f ~  denotes the space of vectors in V~ orthogonal to 1'1. 

Let A be the ring of adeles of F. Let 7r be an irreducible cuspidal automorphic 

representation of G(A) and V,~ be its space of automorphic forms. Let P be the 

standard parabolic subgroup of H,~ preserving the isotropic subspace spanned by 

, . . .  , e,~. Then P has the Levi factor GL(n) x T~, where T~ = SO (1 - ~ )  . el 

Let a be an irreducible cuspidal automorphic representation of GL(n, A) and 

. .H.(A) ((a ® [det I s) × #) (here # be a character of T~ (F) \T~ (A). Let f~ • map(A) 

we employ the normalized induction) and let 

E(h,s,  fs) = i ( s +  l ,a®Tr(#) ) i (2s+ l,a,  A2) • E f~("/h) 
~/eP(F)\Ha(F) 

be the Eisenstein series attached to fs. Here ~r(#) denotes the Weil representa- 

tion of GL(2, A) associated to # and L(s, a, A 2) is the exterior square L-function 

for a. 

Then we consider the Rankin-Selberg integral given by 

(A.1) Z(s ,¢ , f s )  = f E(g,s,f~)¢(g)dg 
Ja (F)\G(A) 

where ¢ • V~. In this appendix we will prove 

THEOREM A: Suppose that the Bessel period determined by ~ and # does not 

vanish identically on V~. (The condition will be made precise as (A.5) below.) 

Then the integral (A.1) is an Euler product and its local factor at a good place 

v equals 
1 L(s + ~, ~v ® av). 
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We note that this is a generalization of the integral representation of the L- 

function for GSp(4) x GL(2) given in Fhrusawa [Ful]. (Recall that PGSp(4) _~ 

SO(5).) The precise conditions for a place v to be good will be given right after 

(A.6). 

Let us turn to the proof of Theorem A. In order to unfold the integral (A.1), 

we first need to know the double coset decomposition P(F)\H~(F)/G(F). Since 

we may identify H~(F)/P(F) with the set of n-dimensional isotropic subspaces 

in Va, by an argument similar to the proof of Proposition 3.1.2 in Gelbart and 

Piatetski-Shapiro [GP], we have 

(A.2) Ha(F) = P(F)G(F) U P(F)~G(F) (disjoint) 

where ~ is any element in Ha(F) such that ~-lei ~ f~  for some i (1 < i < n). 

By the cuspidality of ~r, one sees immediately that the first double coset in (A.2) 

does not contribute to Z(s, ¢, fs). To be explicit, we take 

/ / o  1 1 o0 o 1 00 1 ) 
Then we have 

c fs(~g)¢(g) dg (A.3) Z(s, ¢, £)  = L(s + 1, a ® ~r(#))n(2s + 1, a,  A 2) e(F)\G(A) 

where G ~ denotes the algebraic group G N ~-1 p~. 

Since G ~ stabilizes the intersection of the space spanned by 

~ - l e l  = el ,  . . .  ,~-len-1 = en-l~-len 

and f~ ,  the group G~ is contained in the maximal parabolic subgroup Q of G 

which stabilizes the space spanned by e l , . . .  ,en-1. Let N be the unipotent 

radical of Q and 

{(a ) M I =  g =  la a E G L ( n - 1 )  
g* 

where a* = J,~_lta-lJn_l. It is clear that G ~ contains M1 and N. 
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LEMMA A. 1: We have 

G ~ = T M I N  

where 

T =  h 

and Vo = ( - l e ~  - f l  = en + -~  2 n-  

in 1)ih so,3   vo=v0} 
l n - 1  / 

Proof: From the remark above, it is enough to show that h (h 
ln--1 

SO(3)) belongs to G¢ if and only if hvo = Vo. (1 . )  
Suppose h E G ~. Let V I be the space spanned by en, fo, f l ,  en. 

1,~-x 
Then we may regard h, ~ e SO(V'). Since h(~-le,~) is in the intersection of 

V'  and the space spanned by ~-1el = e l , . . .  ,~ - len-1  = e n - l , ~ - l e n ,  we have 

h(~-len)  = a~-len where a is a scalar. Thus hvo = h(~-len - f l )  = a~-le,~ - 

f l  = avo + (a - 1)fl.  Since vo, hvo E f~ ,  we have a -- 1 and hvo = vo. 

The converse is clear. | 

Let Um be the group of upper triangular unipotent matrices in GL(m) for a 

positive integer m and ¢ be a nontrivial character of F \A.  Then we define a 

character ¢ of Um(F)\Um(A)  by 

~/)(U) ---- ~)(Ul,2 -~- U2, 3 "]- " " " "~- Um--l,m). 

By the cuspidality of a, we have a Fourier expansion 

f,(h) = E 
-reU,~-I ( F) \ GL(n- I,F) 

W 12 

where A* = Jn tA-1Jn  and 

W(h ,  fs) = fJu f8 12 
,~(F)\Ur,(A) 

Hence (A.3) becomes 

Z(s, ¢, fs) = L ( s + l , a @ ~ r ( l ~ ) ) L ( 2 s + l , a ,  A 2 ) [  W ( ~ g , L ) ¢ ( g ) d g  
J R(F)\G(A) 
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where R = T U ~ - ~  N .  
Since J commutes with ii ( u  E U,-l(A)) ,  we have 

JnJ-' = 

Thus 

For t  E T ( A ) ,  JtJ-' is of the form ( I n  t) where t .  E T,. Let A be the 

character of T ( A )  defined by X(t) = p-'(t,). Then we have 

Let S = (1,0, z )  and U = u,-IN. We define a character Bs of U(A)  as in (1.9) 
and extend it to a character of R(8) by Bs(tu) = X(t)Os(u). Then we have 

(A.4)  

where 

Now our principal assumption on r is that 

(A.5)  B+ # O for some E V,. 

H a  (A) It is clear that W ( h ,  fs) lies in Indp(A) ( ( W ,  8 I det I S )  x p ) ,  where W ,  is the 

Whittaker model of a relative to $-I. Since 
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as a restricted tensor product over all places v of F, where W~,. is the local 

Whittaker model of av, there is no loss of generality in assuming that  W ( h ,  .1'8) is 

a pure tensor• Thus we write W(h ,  fs) = l-Iv Ws,v(hv). Similarly since Be E B,~, 

where B,~ is the Bessel model of ~r with respect to the character 0s, we may 

assume that  Be(g) = I-iv B,,(gv), where By is in B~,~, the space of the local 

Bessel model of r . .  Hence the integral (A.4) is factorizable with local factor 

(A.6) 

&(s) =L(s+l,a ® .( vllL(2s+l,av, fR W~:,(~g)B,(g)dg.  
(Fv)\G(F.) 

We compute this local factor at a good place v. More precisely, suppose that the 

finite place v does not ramify in F ( v ~  ) and 2 is a unit in O,,  the ring of integers 

in F, .  Then we compute (A.6) for unramified principal series representations 

7rv, av and an unramified character #v, under the assumption that  Ws,v and By 

are the spherical vectors normalized so that Ws,,(1) = 1 and By(l)  = 1. 

Let 5 = (g l , . . .  , g,~) be a vector of integers. We say that 5 is d o m i n a n t  when 
5 t l  _> t~2 _ . . .  > gn -> 0. We define ~y,, a diagonal element in G(F,) ,  by 

6 diag(we,, g= g,~ 1, w~ -g" , "~7v -e2 ) Wv -el  ) T U  v ~ "~U v , • . .  , "UY v ~ ~ • .  • 

5 where Wv is a prime element of F. .  We also denote by w. ,  a diagonal element in 

GL,~(F~), dmg(w." e~, w~t~,... , wren), when there is no fear of confusion. 

Then by a similar argument as in (3.4-5) of Furusawa [Full, using the Iwasawa 

decomposition and the Cartan decomposition, we have 

Zv(s)  = n(s  + 1, av ® rr~(I.tv))L(2s + 1, av ,  A 2) 

( E Ei~-l'ti(2n+1-2i) . . . .  5,,-: 6, 
• qv vVs.v ( W v ) D v  ( w  v)  

5=(~1 ..... &~-l,0) 
d o m i n a n t  

+(1--(va--)q~ -1) E 
a=(e, ..... e.) 

d o m i n a n t  
g , ~ > 0  

qY~.~-l~-._ ~i(2n+1-2i) . . . .  5, r'* z 8,, 
WS,V (Va v )I~v tWV)} 

where q. denotes the cardinality of the finite field O , / w ,  Ov and 

-1 ¢ (F:) 2. 

Since 
~ I t iW~(w6" 

w,,v( v = = v ,  
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for 5 = (gl , . . .  ,t,~) dominant,where W~ is the spherical Whittaker function in 

~V~,. such that W~(1) = 1, we have 

(A.7) Z,(s) = L(s + 1, av ® %(#v))L(2s + 1, a,, A 2) 
n - - 1  3 n ~ - I  ~ . ~  

6=(Ca ,... ,e~_ 1,0) 
dominant 

+ (1 qvl)  Z J--.,i=1 e,t-s+ , - ,)l,~].a(~6.~ t~6"~ --  tlv r, v kwv]  *'~v k W v ) )  • 
~=(e, ..... e,) 

dominant 
tn >0 

Here we note that when (~) -- 1, i.e., the torus T is split, by conjugating the 

torus so as to make it diagonal, we replace Bv(w~) by Bv(n(1)w~) where n(1) is 

the element in G(Fv) defined in Section 1 of the preceding paper. 

We compute (A.7) closely following the similar computation in Section 5 of 

Bump, Friedberg and Ginzburg [BFG]. First we need some notations. Let t,~,. 

(resp. ta,v) denote a representative of the semi-simple conjugacy class in LG° = 

Sp(2n, C) (resp. GL(n,C)) associated to try (resp. av). We specifically take 

t~,,, = d iag(a l , . . .  , a . ,  ~ 1 1 , . . . ,  a~l ) ,  to,. = d iag(Ta, . . . ,  7-).  

The Weyl groups of Sp(2n) and GL(n) act on C[O~l=l=l,..., O~n ~11 and C[71 , . . . ,  3'hi, 

respectively. We denote by .4 and B the alternators in the respective group 

algebras. We regard .4 and B as commuting operators on 

C[Otl :kl , . . . ,  o ~  1] @ C [ ' ) ' l , . . . ,  ~'n]. 

Then we recall that  by the Shintani, Kato, Casselman-Shalika formula (cf. 

[CS D for the Whittaker function for GL(n), for (f -- ( t l , . . .  ,gn) dominant, we 

have 
( -12~-~in=l l , ( n + l - 2 i ) )  .GL(n ) [$  , 

. GL(n) where ~t~ denotes the character of,the irreducible finite dimensional holo- 

morphic representation of GL(n, C) whose highest weight is & Then the Weyl 

character formula says that 

6 I.l'a, v)  ~-- GL(n) k l l  12 " " ' T n  ) 
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,o~ n--1 n--2 
w h e r e  A G L ( n  ) = Dl,'~l ")'2 " ' "  ~ n - 1 ) -  

Similarly the Weyl character formula for Sp(2n, C) implies that 

173 

xSp(2n)(t~r,v) = h  -1 A[a t l+n~ t2+n-1 . . . a tn~+l  ) 
Sp(2n)~k  1 t~2 

. sv(2,~) denotes the character of the irreducible finite dimensional holo- where z~ 

morphic representation of Sp(2n, C) whose highest weight is ~ and Asp(2n ) = 

,~ ,~-1 = (--1)'~A where A is the one ~4(a l a  2 -. .a,~). (Here we note that Asp(2n ) 

used in the preceding paper.) 

Then as stated as (A.1.3) in the appendix to [GP], we have an identity 

oo oo 

Z tr(Symi(tv," ® t~,.))X' = (~--~ tr SymJ(A2t.,~)X2J) • D(a, % X) 
i=0 j = 0  

where 

D(a,% X) = Z . GL(n ) , .  ~ Sp(2n)/÷ ~ v£1+12+.--+£~ 
A5 ~,r'a,vJA.6 k"~r,vJ A 

~=(t, ..... t , )  
dominant  

Thus by invoking the explicit formulas obtained in the preceding paper, our task 

is to prove that 

n _ !  _ I  
(A.8) D(a,7;X) H ( 1  - 7iflqv 2X)(1 - ~ifl--lqv 2 X )  "~ 

i=1 

E A - -  1 A - 1  Xtl-b~2-b...-}-t~-i 
"aGL(n) Sp(2n) 

~--(~1 ..... t~_~,O) 
dominant  

n - 1  
. A B ( ~ - I  ~ . - 1  . - ~  t, -1  -½ -1  -1  -½ 

" ' "  n'~l  '~2 " ' ' ~ / n - - 1  1-I(a~7,) ( l - a ,  ~qv ) ( l - a ,  ~ qv )) 
i----1 

-J- Z A - 1  A - I  Xtl+ta+'"+t'~ ~o5( . )  Sp(2.) 

dominant  
t,~ > 0  

n n--1 n--1 n--2 n _ 1  1 1 
"'fl~(O¢l OL2 " " " O~n~'l "~2 "''~n--1 I1 (aCr~) t' (1 - ~ - l ~ q v  ' )(1 - eta- ~-lqv  ")) 

i--1 
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for the split case (here fl =/.zv(w,~)) and that 

n 

(A.9) e(a ,  7; X) H ( 1  - 72q:lX 2) = 
i=1 

E A -  1 m - 1  X t l  +~2+...+£n-1 
GL(n) Sp(2n) 

6=(e~ ..... e._~,0) 
dominant 

n - 1  

• .AB (o~ ' ( [ 2~  - I  • • • an71n-172n-2 " " " 7n-1 1-I (aiTile' ( 1 - -  O~i-2qvl)) 

i=1 

+ 
~ G L ( n )  ~ S p ( 2 n ) ' "  

~=(t~ ,... ,t.) 
dominant 

t n>O 

n, 

• , ,A.~(o~'~'o~ " -1  . .  • o~ 'n.71n-1 72 '~-~  • • • 7 . - ,  I I ( , : , , 7 , ) ~ ,  ( 1  - , v ~ q ; - 1 ) )  
i =1  

- s -½ 
for the nonsplit case, where X = q. 

Let us prove (A.8). First we note that 

n 

D(a ,  7 ; X )  H(1-Tiflq;½X)= E A - 1  A - 1  ylgl +~+-- -+~n  
GL(n) ~Sp(2n)== 

i = I  6=(l l  ,... ,~n) 
dominant 

n 

~ B ( ~ - I  ~ ~-1 . - ~  H(~ ,7~)~ , (1  _ ~;1/~q~-~)). . . . .  n71 72 " " " 7n--1 
i----1 

Since this is proved exactly in the same way as (5.5) in [BFG], we omit the proof. 

Then what we have to prove is that 

n 
_ 7~-aq~  2X) ~ ^ - a  ^ - 1  Xt,+~2÷..-+e~ (A.1o) I-[(i - ~  ~ G L ( n )  ~Sp(2n)  

i=l ~=(t~,... 2.)  
dominant 

n 
1 _ !  f l . B ( ~ a ~ - I  a n-1 n-2 ..7n_i l -I(aiTi)  t`(1 - a~- ~qv 2)) . . . .  n71 72 " 

i----1 

n _ t  
equals the right hand side of (A.8). Since I'Ii=1(1 - 7ifl-lqv 2X)  is symmetric, 

it commutes with the alternator B. Thus (A.10) is written as 

(A.11) ~ ~ ,%-I ^ - ,  Xe,+,,+-..+,., 
GL(n) '- 'Sp(2n) 

6=(~l ..... l , )  SC{1 ..... n} 
dominant 

• As({ II ( - ~ - ~ q ~  ½ x) l~l '~V ~''' ~ - ~ i ' - ~ ' - 2  • • • ~--~ I~I ( ~ ) t ,  (1 - ~ , ~ q ;  ½)). 
j E , S  i=1 
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Let Xs  be the characteristic function of S. Then by replacing ~i by ei - x s ( i ) ,  

(A.11) is rewritten as 

(A.12) E E A - 1  A - 1  Xll  +~2+'"+I" GL(n) Sp(2n) 
SC_(1 .. . . .  n} 5----(ex .....  en) 

g i - X s  ( i )_>ei+l-Xs( i+l)  ( 1 < i < n - 1 )  
e,, >xs (n) 

--½Motnogn--1 . . .  OLnTn--1 n--2 . . . , , { n _ l ~ i ( o q ~ f i ) t i ( l _ o l ~ f l q v 2 ) )  . n  1 _ i  .A~kt 11 ~.__0: j l f ] - I  ( --lfi/--lt ~ qv ,J 1 2 1 ")'2 
j E S  i=1 

Suppose that  i C S and i + 1 ~ S. Then the condition in the above summation 

is gi > ei+l. But when gi = gi+l, the argument of ,413 is invariant under the 

interchange of ai  and ai+l.  Hence .,4 annihilates it and we may replace the 

condition ei > ei+l by the condition ~i >_ gi+l in the above summation. 

Now let us suppose that  i ~t S and i + 1 E S. Then the condition in the above 

summation becomes ei > fi+l - 1. But when ei = ~i+1 - 1, the argument of .AB 

has the same exponent for 7i and 7i+1. Since B annihilates any monomial with a 

repeated exponent, we may replace the condition ei > gi+l - 1 by the condition 

gi _> ei+~. 
Thus (A.12) is rewritten as 

(A.13) E E A - 1  A - 1  X ' l  + " + ' " + ' n - 1  OL(n) Sp(2n) 
S 'C{1 .....  n - l )  6=(e, .... .  f n - l , 0 )  

dominant 
1 2 n _ t  --i --I --~ n n--I O: n--I n-- "~4~([I-IjEs,(--Ogj fl qv )]0/10t2 "'" n')'l ")'2 " ' '~ 'n-- I  I-[(~iTi)e'(l-~Tl~q~ =)) 

i=i  

-{- E E A--1  A - 1  y ' l  q-g2+"-q-g,, 
~ G L ( n )  ~ S p ( 2 n ) ' "  

SC_{1 .....  n} 6----(•1 .. . . .  en) 
dominant 

G,>0 
n 1 --~" • ,A~([ y I  ( -o t j -1 ]~ - lqv  ~ )]o~ot~,-l- •. • O~n'Tln--l")'2n--2 " " " "Yn-- 1 11 (ai')',)t' (1 - a~- f~q,, 2)). 

j E S  i=1 

Thus by interchanging the order of summation and noting that  ,4 annihilates any 

monomial whose exponent of an is 0, we see that  (A.13) equals the right hand 

side of (A.8). 

For the nonsplit case, (A.9) is proved exactly in the same way, by 

rewriting 1 7 ~ q v l X  2 and  1 a.~2q~ 1 as (1 _1 _1 
- -  -- -- "/iqv 2X)(1 + 7iq. 2X) and 

(1 - a~-lq~-½)(1 + aT~lq~½), respectively. 1 
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